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Motivation

To constrain the correlators in 2d CFTs, people have studied how they
behave when modifying the relevant Riemann surface by adjusting
its complex structure or cutting/gluing in different ways.

A systematic way to encode this information is provided by a
modular functor, which assigns to a Riemann surface Σ the vector
space of conformal blocks Bl(Σ) on Σ.

There is also another notion of modular functor where the surfaces
are smooth manifolds and the associated vector spaces carry a
(projective) representation of the mapping class group of the
surface. These two versions of modular functors are often called
complex-analytic and topological, respectively.

A prominent origin of topological modular functors comes from
certain 3d topological field theories (TFTs). This relation can be seen
as the starting point of the CFT/TFT correspondence.
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CFT/TFT correspondence

To make this precise we first need to clearly distinguish between a
chiral and a full CFT. For us a chiral CFT will consist of the following
mathematical objects:

• A vertex operator algebra (VOA) V (formalizing the algebra of
chiral operators);

• A complex-analytic modular functor BlV;

For a given chiral, a full CFT will further include:

• Specific VOA representations, the field content;
• A consistent system of correlators;

For any rational/semisimple VOA V there is a 3d TFT ZV with Rep(V)

as its category of line operators. One can construct a topological
modular functor from ZV which is conjectured to be “the same as”
the complex-analytic one BlV. Assuming this conjecture, one can use
ZV and one extra input datum to construct a full CFT as above [FRS]!

Can we go beyond the semisimple setting?
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Main result

Theorem [H., Runkel]
Let C be a not necessarily semisimple modular tensor category, then
the 3d TFT ZC of [DGGPR1] constructed from C induces a topological
modular functor:

BlC : Bord2+ε,2,1 −→ ProfLex.

As an important example let us consider C = Rep(V) for V a “finite
enough” VOA. In this case our construction gives:

BlV : Bord2+ε,2,1 −→ ProfLex CFT interpretation

7−→ Rep(V) (possible field insertions)

7−→ HomV(M⊗ N, L) (3-point blocks on sphere)

7−→ HomV(1,L)

⇐
= 7−→ ⇐
= S (modular S-transformation)

7−→ HomV(1,L)
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Main result II

One part of the main theorem was already shown by [DGGPR2], our
main contribution is the following result on factorisation of
conformal blocks:

Proposition
Let Σ be a (possibly connected) surface with at least one incoming
and outgoing boundary component, and let Σgl be the surface
obtained from gluing these boundaries. Then there is a natural
isomorphism

BlC(Σgl) ∼=
∮ X∈C

BlC(Σ)(X, X).

induced by a 3-dimensional bordism.

The symbol
∮ X∈C is a categorical notion and can be thought of as a

precise way to sum over intermediate states.
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Questions?

5



Proof sketch I

The relevant 3-bordism can be obtained as follows:

Σ1 Σ2
S S

Bordχ
2+ε,2,1

Σ1 tS Σ2

Σ1 Σ2

zBordχ
3,2(C)

(X,+) (X,−) X X

MX

glue along S
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Proof sketch II

We need to distinguish the following two scenarios:

1. We glue boundary components on two different components of
Σ.

2. We glue boundary components on a connected component of Σ.

Both of these scenarios are different from a global perspective, as
can be seen by the example of gluing two disjoint cylinders to a
torus:
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Why are non-semisimple theories interesting?

From a physics perspective:

• Applications in statistical physics, e.g. critical dense polymers.
• Wess-Zumino-Witten models with supergroup target are often
non-semisimple.

• Twists of supersymmetric QFTs are usually non-semisimple,
even derived.

From a mathematics perspective:

• Many 2d TFTs are non-semisimple.
• Can we understand other non-semisimple CFT constructions
from the 3d perspective?

• Stronger topological invariants.
• Topological interpretation of algebraic structures.
• Step towards derived TFTs.
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